
Jovian

Aakash N S, Siddhant Ujjain

Sep 17, 2019

CONTENTS

1 Getting Started 3
1.1 Installation . 3
1.2 Uploading Jupyter Notebooks to Jovian . 4
1.3 Reproducing uploaded notebooks . 5
1.4 Notebook versioning and diffs . 6
1.5 Attaching files and model outputs . 7
1.6 Tracking Datasets, Hyperparameters and Metrics . 7
1.7 Comparing and Analyzing experiments . 8
1.8 Collaborating on Jovian projects . 9
1.9 Jovian Pro . 10
1.10 Commit . 10
1.11 Log Dataset, Hyperparams & Metrics . 11
1.12 Command Line Commands . 12
1.13 Fastai Callback . 13
1.14 Keras Callback . 14
1.15 Use Extension to Commit . 14
1.16 Enable or Disable . 14

Index 15

i

ii

Jovian

Jovian is a platform that helps data scientists and ML engineers:

• Track & reproduce data science projects

• Collaborate easily with friends/colleagues, and

• Automate repetitive tasks in their day-to-day workflow.

CONTENTS 1

https://www.jvn.io

Jovian

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

Learn more about installing Jovian python library and some of the core features of Jovian.

Run this command in your terminal:

pip install jovian -q --upgrade

1.1 Installation

The jovian python library can be installed using the pip package manager. To install jovian via terminal or
command line, run:

pip install jovian --upgrade

You can also install the jovian library directly within a Jupyter Notebook, by running the following command in a
code cell:

!pip install jovian --upgrade

Caution: If you get a Permission denied error, try installing with sudo permission (on Linux/Mac).

$ sudo pip install jovian --upgrade

Another alternative is to try installing with the --user flag, but you’ll need to ensure that the target directory is
added to your system PATH.

$ pip install jovian --upgrade --user

Once the installation is complete, you can start uploading Jupyter notebooks to Jovian.

Configuration (for Jovian Pro users only)

If you are a Jovian Pro user, run the following commands on the terminal (or command line) to connect the jovian
library with your company’s internal Jovian Pro site:

jovian configure

You can also do this directly within a Jupyter notebook, by executing the following inside a code cell:

import jovian
jovian.configure()

3

https://jupyter.org/

Jovian

The above command prompts for the following information:

1. Organization ID: The Organization ID provided by your company for authentication. E.g. if you are accessing
Jovian Pro at https://mycompany.jvn.io , your organization ID is mycompany.

2. API key: You’ll get the API key when you’re logged in to your organization’s Jovian Pro site. By clicking on
the API key button, the key will be copied to clipboard.

Note: You need to run jovian configure or jovian.configure() only once after installation. Your
credentials are cached in the ~/.jovian directory on your computer. You can run jovian reset to clear this
configuration.

You can learn more about Jovian Pro here, or start uploading Jupyter notebooks to Jovian in the next section.

1.2 Uploading Jupyter Notebooks to Jovian

Jovian allows you to upload and share Jupyter notebooks instantly with a single command, directly within Jupyter.
Make sure you’ve completed the installation before reading further.

1.2.1 Uploading Notebooks

Step 1: Import jovian by running the following command within a Jupyter notebook.

import jovian

Step 2: After writing some code, running some experiments, training some models and plotting some charts, you can
save and commit your Jupyter notebook.

jovian.commit()

When you run jovian.commit for the first time you’ll be asked to provide an API key, which you can get from
your Jovian (or Jovian Pro) account.

Here’s what jovian.commit does:

• It saves and uploads the Jupyter notebook to your Jovian (or Jovian Pro) account.

• It captures and uploads the python virtual environment containing the list of libraries required to run your
notebook.

• It returns a link that you can use to view and share your notebook with friends or colleagues.

For more features of jovian.commit and API reference visit Commit.

Attention: In certain environments like JupyterLab and password protected notebooks, jovian may not be able
to detect the notebook filename automatically. In such cases, pass the notebook’s name as the nb_filename
argument to jovian.commit.

1.2.2 Benefits of Jovian

Easy sharing and collaboration: Just copy the link to share an uploaded notebook with your friends or colleages.
Your notebooks are also visible on your profile page, unless you mark them Secret. You can also add collaborators and

4 Chapter 1. Getting Started

https://mycompany.jvn.io
https://jupyter.org/
https://jvn.io

Jovian

let others contribute to your project (learn more).

Cell-level comments and discussions: Jovian’s powerful commenting interface allows your team to discuss specific
parts of a notebook with cell-level comment threads. Just hover over a cell and click the Comment button. You’ll
receive an email when someone comments on your notebook, or replies to your comment.

End-to-end reproducibility: Jovian automatically captures Python libraries used in your notebook, so anyone (in-
cluding you) can reproduce your work on any computer with a single command: jovian clone. You can also use
the ‘Run’ dropdown on the Jovian notebook page to run your notebooks on free cloud GPU platforms like Google
Colab, Kaggle Kernels and BinderHub.

This is just a small selection of features that Jovian offers. Continue reading by clicking the Next -> button to learn
more, or use the sidebar to jump to a specific section.

1.3 Reproducing uploaded notebooks

A uploaded notebook on Jovian can be reproduced in any other machine. Follow the below procedure to do reproduce
the notebook in your machine.

1.3.1 Clone

1. Visit the link of the uploaded notebook.

2. Click on the Clone button, which copies the clone cli command (along with the notebook_id) to the clipboard.

3. Paste the command in the terminal, in the directory where you want to clone the notebook project and then run
the command.

The copied command will be of the the following format

jovian clone <notebook_id>

1.3.2 Install

Jovian captures the original python environment of the notebook, which make it easier to reproduce the notebook by
installing all the required dependencies. The following commands uses conda to install all the required packages,
make sure that conda is installed.

Once the notebook is cloned, it would have created a folder with the name of the notebook. Move to that directory.

cd jovian-demo

Then run

jovian install

The above command prompts for a virtual environment name where it will install all the required packages. By default
it will have the original environment name in the square brackets, just click enter key to retain the name else specify
the environment name.

In this way, Jovian seamlessly ensures the end-to-end reproducibility of your Jupyter notebooks across different oper-
ating systems.

1.3. Reproducing uploaded notebooks 5

https://conda.io

Jovian

Note: You have to own the notebook or have to be a collaborator to commit changes to the same project notebook. If
not you can commit any changes made to your profile as a new notebook.

1.3.3 Pull

If changes are made after you have cloned the notebook by any of the collaborator. You can use pull to get all those
changes.

Move to the cloned directory and run

jovian pull

Attention: Beware any uncommitted changes will be lost during the process of jovian.pull. When you pull
the notebook it will be a duplicate of the latest version of the notebook on Jovian.

1.4 Notebook versioning and diffs

1.4.1 Version control

If you’re used to creating many duplicate versions of notebooks with slight modifications and long file names. Look
no further, Jovian will be your version control for notebooks.

jovian.commit records all the versions under same notebook project. So, each change can be a version by author
and collaborators which can be easily toggled in the website.

Note: You have to own the notebook or have to be a collaborator to commit changes to the same project notebook. If
not you can commit any changes made to your profile as a new notebook.

1.4.2 View Differences

All the versions are comparable, you can view additions, deletions made among any 2 versions of the notebook.
Hide/show common part of the code.

How to view the differences?

1. Commit different version and visit Jovian.

2. Click on Version drop down on the right top corner.

3. CLick on Compare Versions

4. Select any 2 versions with the use of check boxes and click on View Diff button.

There are more things to be compared, but first let’s add more content to the notebook to understand all the parameters
that can be compared. Click on Next to follow through.

6 Chapter 1. Getting Started

https://jvn.io
https://www.jvn.io

Jovian

1.5 Attaching files and model outputs

As seen in the previous section by committing, source code and environment files are captured & uploaded. More
files can be attached to the notebook such as files with helper code, output files/model checkpoints that the notebook
is generating.

1.5.1 How to attach these files?

jovian.commit(files=[], artifacts=[])

1.5.2 What to include in the files argument?

The type of files which is required to run the notebook.

• Helper code (.py)

• Some input CSVs

1.5.3 What to include in the artifacts argument?

Any type of outputs that the notebook is generating.

• Saved model or weights (.h5, .pkl, .pth)

• Outputs, Submission CSVs

• Images outputs

1.5.4 Where to search for the files after committing?

All the attached files are listed under Files Tab.

Files can be:

1. Renamed

2. Downloaded

3. Deleted

4. View Raw

5. Uploaded

1.6 Tracking Datasets, Hyperparameters and Metrics

Spreadsheets is one of the ways to track information & results of multiple ML experiments. However, using spread-
sheets can be tiresome and non-intuitive without the context of the code.

Jovian makes its easy for anyone to track information about datasets, hyperparameters and metrics which are associated
with each version of the your experiment in notebooks. Its also displays these information version-by-version of your
notebook under single UI.

These information of a notebook are all added to Records Tab where you can toggle and view each version’s log.

1.5. Attaching files and model outputs 7

Jovian

import jovian

1.6.1 Dataset

data = {
'path': '/datasets/mnist',
'description': '28x28 gray-scale images of handwritten digits'

}
jovian.log_dataset(data)

1.6.2 Hyperparameters

hyperparams = {
'arch_name': 'cnn_1',
'lr': .001

}
jovian.log_hyperparams(hyperparams)

1.6.3 Metrics

metrics = {
'epoch': 1,
'train_loss': .5,
'val_loss': .3,
'acc': .94

}
jovian.log_metrics(metrics)

1.6.4 Reset

If you’re not satisfied with some experiment and want to discard the previously recorded parameters to start a fresh
experiment. Use

jovian.reset()

The input to any of these can be a python dict. You can add custom parameters that are related to your experiment
and have it record values manually, or automate it to record the values of a variable in a loop. Visit this page for these
logging API reference.

We have callbacks for keras and fastai to automatically record hyperparams and metrics check it out.

Click Next to look at how to compare all of these information of all the versions.

1.7 Comparing and Analyzing experiments

Once you have more than 2 versions of a notebook, you will be able to use Compare Versions present in the
Version dropdown on the top right corner.

Here you can observe all types of information about all of your versions.

8 Chapter 1. Getting Started

https://docs.python.org/3/tutorial/datastructures.html#dictionaries

Jovian

• Title

• Time of Creation

• Author

• All the parameters logged under dataset.

• All the parameters logged under hyperparameters.

• All the parameters logged under metrics.

• Notes (for author and collaborators add extra notes)

1.7.1 Sort

You can sort any column or a sub-column (For ex: accuracy or any other metric, date of creation etc.) by clicking on
the column header.

1.7.2 Show, Hide and Reorder columns

You can create a custom view to analyse & compare your choice of parameters. Click on Configure button and
then tick on the checkboxes to create a customized view. Click and drag the elements to reorder them based on your
preference.

1.7.3 Add notes

You can add notes to summarize the experiment for reference or for collaborators to refer to.

1.7.4 View Diff between specific versions

Select any of the 2 versions by ticking the checkbox next to each version-row of the compare table which can be seen
when you hover over any row. Click on View Diff button to view the additions and deletion made.

1.7.5 Archive/Delete versions

Select version/versions by ticking the checkbox of the row/rows. This enables both Archive and Delete ready for
the respective actions.

1.7.6 Filter

By default all the archived versions are hidden, you can display them by enabling Show Archived in Filter
dropdown.

1.8 Collaborating on Jovian projects

Jovian allows you to add collaborators to work with you on a ML Project.

1.8. Collaborating on Jovian projects 9

Jovian

1.8.1 How to add collaborators?

Click on Share button of the notebook and add them by their username or email id registered with Jovian.

This will allow the contributors to be able to commit changes to the same notebook project. The experiments by all
the collaborators will also show up in the compare table. tab.

1.8.2 Comment on individual code cells

Users can comment on any code cells individually and maintain that thread to have specific discussion about a part of
the source code with context.

1.8.3 Maintain secret notebooks

You may set a notebook as secret to hide it from publically being displayed on your profile. Only collaborators and
users having the link to the notebook will be able to view it. You can find the option to Make Secret in the settings
for each notebook.

1.9 Jovian Pro

Please contact us at hello@jvn.io

1.10 Commit

jovian.commit(secret=False, nb_filename=None, files=[], capture_env=True, env_type=’conda’, note-
book_id=None, create_new=None, artifacts=[])

Commits a Jupyter Notebook with its environment to Jovian.

Saves the checkpoint of the notebook, capture the required dependencies from the python environment and
uploads the notebook, env file, additional files like scripts, csv etc. to https: // www.jvn.io . Capturing the
python environment ensures that the notebook can be reproduced and executed easily using the ** {links to
reprodue notebooks}.**

Parameters

• secret (bool, optional) – Create a secret notebook on Jovian, which is only acces-
sible via the link, and is not visible on the owner’s public profile. By default, committed
notebooks are public and visible on the owner’s profile.

• nb_filename (string, optional) – The filename of the jupyter note-
book(including the .ipynb extension). This is detected automatically in most cases, but
in certain environments like Jupyter Lab, the detection may fail and the filename needs to
be provided using this argument.

• files (array, optional) – Any additional scripts(.py files), CSVs that are required
to run the notebook. These will be available in the files tab on Jovian .

• capture_env (bool, optional) – If True, the Python environment(python version,
libraries etc.) are captured and uploaded along with the notebook.

• env_type (string, optional) – The type of environment to be captured. Allowed
options are ‘conda’ and ‘pip’.

10 Chapter 1. Getting Started

Jovian

• notebook_id (string, optional) – If you wish to update an existing notebook
owned by you, you can use this argument to provide the base64 ID(present in the URL) of
an notebook hosted on Jovian . In most cases, this argument is not required, and the library
can automatically infer whether you are looking to update an existing notebook or create a
new one.

• create_new (bool, optional) – If set to True, doesn’t update the existing notebook
on Jovian(if one is detected). Instead, it creates a new notebook when commit is called.

• artifacts (array, optional) – Any outputs files or artifacts generated from the
modeling processing. This can include model weights/checkpoints, generated CSVs, images
etc.

Attention: Pass notebook’s name to nb_filename argument, in certain environments like Jupyter Lab and
password protected notebooks sometimes it may fail to detect notebook automatically.

1.11 Log Dataset, Hyperparams & Metrics

jovian.log_dataset(data, verbose=True)
Record dataset details for the current experiment

Parameters

• data (dict) – A python dict or a array of dicts to be recorded as Dataset.

• verbose (bool, optional) – By default it prints the acknowledgement, you can re-
move this by setting the argument to False.

Example

import jovian

data = {
'path': '/datasets/mnist',
'description': '28x28 images of handwritten digits (in grayscale)'

}
jovian.log_dataset(data)

jovian.log_hyperparams(data, verbose=True)
Record hyperparameters for the current experiment

Parameters

• data (dict) – A python dict or a array of dicts to be recorded as hyperparmeters.

• verbose (bool, optional) – By default it prints the acknowledgement, you can re-
move this by setting the argument to False.

Example

import jovian

hyperparams = {
'arch_name': 'cnn_1',
'lr': .001

(continues on next page)

1.11. Log Dataset, Hyperparams & Metrics 11

Jovian

(continued from previous page)

}
jovian.log_hyperparams(hyperparams)

jovian.log_metrics(data, verbose=True)
Record metrics for the current experiment

Parameters

• data (dict) – A python dict or a array of dicts to be recorded as metrics.

• verbose (bool, optional) – By default it prints the acknowledgement, you can re-
move this by setting the argument to False.

Example

import jovian

metrics = {
'epoch': 1,
'train_loss': .5,
'val_loss': .3,
'acc': .94

}
jovian.log_metrics(metrics)

1.12 Command Line Commands

1.12.1 Initialize

Requests for a API Key for a new user, can find the key at Jovian. By clicking on API key button, key will be copied
to the clipboard.

$ jovian init

1.12.2 Clone a Notebook

Clone a notebook form Jovian, by clicking on the Clone button of a notebook repo the whole clone command will
be copied to the clipboard.

$ jovian clone {notebook_id}

1.12.3 Pull the latest Notebook

Pull the latest version of the notebook, use the command in a cloned repository or from a repository where you have
committed to jovian.

$ jovian pull

12 Chapter 1. Getting Started

https://jnv.io

Jovian

Caution: Make sure the changes are committed if needed, pull overwrites the current notebook.

1.12.4 Install the required dependencies

Install all the dependencies required to the the cloned notebook, use the command in a cloned repository.

$ jovian install

Important: The above command prompts ‘ Please provide a name for the conda environment [{env_name}]: ‘

Press enter to install the dependencies to env_name (base env if the content of the square brackets is empty) else
provide the env name in the prompt.

1.12.5 Version

Displays the current installed version of jovian library.

$ jovian version

1.12.6 Enable or Disable Jupyter Notebook Extension

By default, the jovian jupyter extension is enabled.

$ jovian enable-ext

$ jovian disable-ext

Note: The changes are observed when the webpage of the notebook is refreshed.

1.13 Fastai Callback

class jovian.callbacks.fastai.JovianFastaiCallback(learn: fastai.basic_train.Learner,
arch_name: str)

Fastai callback to automatically log hyperparameters and metrics.

Parameters

• learn (Learner) – A learner object reference of your current model.

• arch_name (string) – A name for the model you’re training.

Example

from jovian.callbacks.fastai_callback import FastaiCallback

jvn_cb = FastaiCallback(learn, 'res18')
learn.fit_one_cycle(5, callbacks = jvn_cb)

1.13. Fastai Callback 13

Jovian

Tutorial

Visit this for a detailed example on using the keras callback, also visit the Records tab to see all the logs of that
notebook logged by the callback.

1.14 Keras Callback

class jovian.callbacks.keras.JovianKerasCallback(reset_tracking=True, arch_name=”,
every_epoch=False, notify=False)

Keras Callback to log hyperparameters and metrics during model training.

Parameters

• reset_tracking (string, optional) – Will clear previously tracked hyperparam-
eters & metrics, and start a fresh recording. Defaults to True.

• arch_name (string, optional) – A name for the model you’re training.

• every_epoch (bool, optional) – Whether to record losses & metrics for every
epoch or just the final loss & metric. Defaults to False.

• notify (bool, optional) – Whether to send notification on slack when the training
ends. Defaults to False.

Example

from jovian.callbacks.keras import JovianKerasCallback

To record logs of every epoch and to notify on slack
jvn_cb = JovianKerasCallback(arch_name='resnet18', every_epoch=True,
→˓notify=True)
model.fit(x_train, y_train,, callbacks=[jvn_cb])

Tutorial

Visit this for a detailed example on using the fastai callback, also visit the Records tab to see all the logs of that
notebook logged by the callback.

1.15 Use Extension to Commit

1.16 Enable or Disable

14 Chapter 1. Getting Started

https://jvn.io/PrajwalPrashanth/7f16274fc3224d829941bc2553ef6061
https://jvn.io/PrajwalPrashanth/34fd4e72905e460db2d16aafab285537

INDEX

C
commit() (in module jovian), 10

J
JovianFastaiCallback (class in jo-

vian.callbacks.fastai), 13
JovianKerasCallback (class in jo-

vian.callbacks.keras), 14

L
log_dataset() (in module jovian), 11
log_hyperparams() (in module jovian), 11
log_metrics() (in module jovian), 12

15

	Getting Started
	Installation
	Uploading Jupyter Notebooks to Jovian
	Reproducing uploaded notebooks
	Notebook versioning and diffs
	Attaching files and model outputs
	Tracking Datasets, Hyperparameters and Metrics
	Comparing and Analyzing experiments
	Collaborating on Jovian projects
	Jovian Pro
	Commit
	Log Dataset, Hyperparams & Metrics
	Command Line Commands
	Fastai Callback
	Keras Callback
	Use Extension to Commit
	Enable or Disable

	Index

